3.9.13 \(\int \frac {A+B x^2}{(e x)^{5/2} (a+b x^2)^{3/2}} \, dx\) [813]

Optimal. Leaf size=176 \[ -\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \sqrt {e x}}{3 a^2 e^3 \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{6 a^{9/4} \sqrt [4]{b} e^{5/2} \sqrt {a+b x^2}} \]

[Out]

-2/3*A/a/e/(e*x)^(3/2)/(b*x^2+a)^(1/2)-1/3*(5*A*b-3*B*a)*(e*x)^(1/2)/a^2/e^3/(b*x^2+a)^(1/2)-1/6*(5*A*b-3*B*a)
*(cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2)
))*EllipticF(sin(2*arctan(b^(1/4)*(e*x)^(1/2)/a^(1/4)/e^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a
^(1/2)+x*b^(1/2))^2)^(1/2)/a^(9/4)/b^(1/4)/e^(5/2)/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {464, 296, 335, 226} \begin {gather*} -\frac {\left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} (5 A b-3 a B) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{6 a^{9/4} \sqrt [4]{b} e^{5/2} \sqrt {a+b x^2}}-\frac {\sqrt {e x} (5 A b-3 a B)}{3 a^2 e^3 \sqrt {a+b x^2}}-\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/((e*x)^(5/2)*(a + b*x^2)^(3/2)),x]

[Out]

(-2*A)/(3*a*e*(e*x)^(3/2)*Sqrt[a + b*x^2]) - ((5*A*b - 3*a*B)*Sqrt[e*x])/(3*a^2*e^3*Sqrt[a + b*x^2]) - ((5*A*b
 - 3*a*B)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[e*x
])/(a^(1/4)*Sqrt[e])], 1/2])/(6*a^(9/4)*b^(1/4)*e^(5/2)*Sqrt[a + b*x^2])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rubi steps

\begin {align*} \int \frac {A+B x^2}{(e x)^{5/2} \left (a+b x^2\right )^{3/2}} \, dx &=-\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \int \frac {1}{\sqrt {e x} \left (a+b x^2\right )^{3/2}} \, dx}{3 a e^2}\\ &=-\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \sqrt {e x}}{3 a^2 e^3 \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \int \frac {1}{\sqrt {e x} \sqrt {a+b x^2}} \, dx}{6 a^2 e^2}\\ &=-\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \sqrt {e x}}{3 a^2 e^3 \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \text {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{3 a^2 e^3}\\ &=-\frac {2 A}{3 a e (e x)^{3/2} \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \sqrt {e x}}{3 a^2 e^3 \sqrt {a+b x^2}}-\frac {(5 A b-3 a B) \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {e x}}{\sqrt [4]{a} \sqrt {e}}\right )|\frac {1}{2}\right )}{6 a^{9/4} \sqrt [4]{b} e^{5/2} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.05, size = 91, normalized size = 0.52 \begin {gather*} \frac {x \left (-2 a A-5 A b x^2+3 a B x^2+(-5 A b+3 a B) x^2 \sqrt {1+\frac {b x^2}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^2}{a}\right )\right )}{3 a^2 (e x)^{5/2} \sqrt {a+b x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/((e*x)^(5/2)*(a + b*x^2)^(3/2)),x]

[Out]

(x*(-2*a*A - 5*A*b*x^2 + 3*a*B*x^2 + (-5*A*b + 3*a*B)*x^2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4,
 -((b*x^2)/a)]))/(3*a^2*(e*x)^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 232, normalized size = 1.32

method result size
elliptic \(\frac {\sqrt {\left (b \,x^{2}+a \right ) e x}\, \left (-\frac {x \left (A b -B a \right )}{e^{2} a^{2} \sqrt {\left (x^{2}+\frac {a}{b}\right ) b e x}}-\frac {2 A \sqrt {b e \,x^{3}+a e x}}{3 a^{2} e^{3} x^{2}}+\frac {\left (-\frac {A b -B a}{2 a^{2} e^{2}}-\frac {b A}{3 a^{2} e^{2}}\right ) \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b \sqrt {b e \,x^{3}+a e x}}\right )}{\sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(222\)
default \(-\frac {5 A \sqrt {-a b}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) b x -3 B \sqrt {-a b}\, \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right ) a x +10 A \,b^{2} x^{2}-6 B a b \,x^{2}+4 a b A}{6 x \sqrt {b \,x^{2}+a}\, b \,a^{2} e^{2} \sqrt {e x}}\) \(232\)
risch \(-\frac {2 A \sqrt {b \,x^{2}+a}}{3 a^{2} x \,e^{2} \sqrt {e x}}-\frac {\left (\frac {A \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b e \,x^{3}+a e x}}+3 a \left (A b -B a \right ) \left (\frac {x}{a \sqrt {\left (x^{2}+\frac {a}{b}\right ) b e x}}+\frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{2 a b \sqrt {b e \,x^{3}+a e x}}\right )\right ) \sqrt {\left (b \,x^{2}+a \right ) e x}}{3 a^{2} e^{2} \sqrt {e x}\, \sqrt {b \,x^{2}+a}}\) \(315\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/6/x*(5*A*(-a*b)^(1/2)*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1
/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*b*x-3*B*(-a*b)^(1
/2)*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2
))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a*x+10*A*b^2*x^2-6*B*a*b*x^2+4*a*b*A)/
(b*x^2+a)^(1/2)/b/a^2/e^2/(e*x)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

e^(-5/2)*integrate((B*x^2 + A)/((b*x^2 + a)^(3/2)*x^(5/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.17, size = 109, normalized size = 0.62 \begin {gather*} \frac {{\left ({\left ({\left (3 \, B a b - 5 \, A b^{2}\right )} x^{4} + {\left (3 \, B a^{2} - 5 \, A a b\right )} x^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) - {\left (2 \, A a b - {\left (3 \, B a b - 5 \, A b^{2}\right )} x^{2}\right )} \sqrt {b x^{2} + a} \sqrt {x}\right )} e^{\left (-\frac {5}{2}\right )}}{3 \, {\left (a^{2} b^{2} x^{4} + a^{3} b x^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

1/3*(((3*B*a*b - 5*A*b^2)*x^4 + (3*B*a^2 - 5*A*a*b)*x^2)*sqrt(b)*weierstrassPInverse(-4*a/b, 0, x) - (2*A*a*b
- (3*B*a*b - 5*A*b^2)*x^2)*sqrt(b*x^2 + a)*sqrt(x))*e^(-5/2)/(a^2*b^2*x^4 + a^3*b*x^2)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 22.65, size = 97, normalized size = 0.55 \begin {gather*} \frac {A \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, \frac {3}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} e^{\frac {5}{2}} x^{\frac {3}{2}} \Gamma \left (\frac {1}{4}\right )} + \frac {B \sqrt {x} \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {3}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} e^{\frac {5}{2}} \Gamma \left (\frac {5}{4}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(e*x)**(5/2)/(b*x**2+a)**(3/2),x)

[Out]

A*gamma(-3/4)*hyper((-3/4, 3/2), (1/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*e**(5/2)*x**(3/2)*gamma(1/4)) +
 B*sqrt(x)*gamma(1/4)*hyper((1/4, 3/2), (5/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*e**(5/2)*gamma(5/4))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(e*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*e^(-5/2)/((b*x^2 + a)^(3/2)*x^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {B\,x^2+A}{{\left (e\,x\right )}^{5/2}\,{\left (b\,x^2+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x^2)/((e*x)^(5/2)*(a + b*x^2)^(3/2)),x)

[Out]

int((A + B*x^2)/((e*x)^(5/2)*(a + b*x^2)^(3/2)), x)

________________________________________________________________________________________